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During crystal growth, concentric steps of unit-layer thickness [= d�hkl �u , with the

surface's hkl Miller indices corrected according to the selection rules for non-

primitive lattices] are often found to split into lower steps in a regular fashion

[Frank (1951). Phil. Mag. 42, 1014±1021]. These `interlaced' step patterns are

introduced by a stacking of two or more growth layers, with different lateral

anisotropy in step velocity within each unit layer. In this paper, a general

relation between the symmetry of the crystal surface and the con®guration of

the concentric step patterns thereon is derived and is used to give theoretical

shapes of spirals, growth hillocks and etch pits. It is shown that many of the

interlaced patterns and their details are imposed by the presence of screw axes

and/or glide planes perpendicular to the crystal surface. Finally, the results are

compared with the patterns of unit-layer height and lower steps observed by

optical and atomic force microscopy on crystals such as SiC, GaN, potash alum,

garnet and NiSO4�6H2O.

1. Introduction

In an early paper on the observation of growth spirals on

(0001) SiC-6H, Verma (1951) reported the occurrence of

hexagonal spirals, at the corners of which the unit-cell-height

steps split up into steps of half height. These interlaced

patterns were interpreted by Frank (1951) as being the result

of a periodic stacking of differently oriented growth layers,

each having a different lateral anisotropy of step velocity.

Later, interlaced step patterns were observed on several other

crystal surfaces examined by optical and atomic force

microscopy (AFM). Examples are (001) potash alum (van

Enckevort et al., 1981), (0001) SiC-4H (Sunagawa & Bennema,

1982), (0001) SiC-6H (van der Hoek et al., 1982), (000�1) GaN

(Nowak et al., 1999; Zauner et al., 2002), (001) NiSO4 �6H2O

(van Enckevort & Klapper, 1987), (110) garnet (Bennema et

al., 1983, and references therein), (010) acetaminophen (Li et

al., 2000) and several proteins (Plomp et al., 2002; Aquilano et

al., 2003). The explanations given for these patterns were

similar to that given by Frank (1951).

The basic principle of the step interlacing phenomenon is

demonstrated by the example given in Fig. 1, which shows a

crystal surface, the growth of which proceeds by a successive

generation and lateral spreading of two different kinds of

layers, of height dhkl=2, from a central point, O. Layers of type

I are bounded by steps A and B, whereas the type II layers

grow via steps C and D. It is assumed that steps A and D move

quickly, whereas steps B and C advance slowly. This implies

that the fast A steps of layer I will catch up with the slow C

steps of layer II, forming a double-height step of unit height,

dhkl. The same happens for the fast steps D and the slow steps

B. This process leads to a pattern consisting of unit-height

steps with interlaced crossovers formed by lower steps of

height dhkl=2. This concept of step interlacing has been

encountered in several variations on crystal surfaces examined

by phase-sensitive optical microscopy and atomic force

microscopy.

Although in a number of papers (van Enckevort et al., 1981,

1993; Bennema et al., 1983; Plomp et al., 2002; Aquilano et al.,

2003) a connection has been made between the occurrence of

interlacing and the presence of a screw axis or a glide plane

perpendicular to the growth surface, no generalized theor-

etical study of the relationship between step interlacing and

crystallographic symmetry has been carried out yet. Three

aspects of crystal growth need to be considered: (i) crystal-

lographic symmetry, (ii) the thickness of the growth layers on

an F face as formulated in the periodic bond chain (PBC;

nowadays called connected net) theory for crystal morphology

(Hartman & Perdok, 1955a,b,c; Bennema, 1993) and (iii) the

anisotropic kinetics of step propagation. Aspect (iii) is speci®c

for the crystal growth situation considered and allows for little

generalization. However, by using crystallographic symmetry

and a number of basic conclusions derived from the connected

net theory, important rules for the occurrence and the char-

acteristics of the various kinds of step interlacing can be

derived. In the present paper, it will be shown that in many

cases interlacing is imposed by symmetry and `must' occur;

this situation will be called `symmetry-induced interlacing'. In a

few cases, interlacing not imposed by symmetry may occur,

which we denote as `incidental interlacing'. The characteristics

of both types, with emphasis on the symmetry-induced inter-

lacing, and rules for their occurrence will be derived. The



theoretical results will be compared with observations

reported in the literature.

2. Incidental and symmetry-induced interlacing: some
basic properties

2.1. Integrated connected net theory and roughening
transition theory

The occurrence of interlacing implies the presence of

growth steps on the crystal surface. The physical basis for the

occurrence of growth steps is given by the connected net

theory integrated with the theory of roughening transition.

The original Hartman±Perdok theory (Hartman & Perdok,

1955a,b,c; Hartman, 1973, 1987) forms the basis of the modern

connected net theory (Bennema, 1993). The integration of this

morphological theory with the concept of roughening transi-

tion was carried out by Rijpkema et al. (1983) and Bennema

(1993, 1996). For recent developments in this theory, the

reader is referred to Grimbergen et al. (1998, 1999), Meekes et

al. (1998) and Bennema et al. (2003).

In order to derive the morphology of crystals and to verify

whether steps can occur on a given crystal surface, according

to the above-mentioned theory, the `crystal graph' of the

crystal under investigation has to be partitioned into

connected nets. The procedure to ®nd connected nets can be

summarized as follows (Bennema, 1993). First, the `crystal

graph' corresponding to the crystal structure has to be deter-

mined. A `crystal graph' is a construction composed of the

centres of gravity of the growth units (atoms, molecules or

ions) from which the crystal was growing and the (generally

®rst nearest neighbour) bonds between the growth units. Then

the occurrence of one or more connected networks of growth

units is searched for orientations (hkl). Such a connected net

must be con®ned to within a slice of overall thickness dnhnknl,

as de®ned by the BFDH (Bravais, Friedel, Donnay and

Harker) law. According to this law, dhkl is the interplanar

distance between adjacent planes with Miller indices hkl.

Because of the selection rules of the space group introduced

by a non-primitive lattice, screw axes or glide planes, the

interplanar distance may be reduced. The slice thickness then

becomes dnhnknl, with n = 1, 2, 3, 4, 6. The BFDH law states

that the higher the value of dnhnknl the more often and/or

larger the face (hkl) that is expected to appear on the equi-

librium and growth form of the crystal.

If it is possible to partition the crystal graph into parallel

connected nets that ®t within the slice thickness as de®ned in

the BFDH law then it can be shown that a surface with

orientation (hkl) parallel to such a connected net will have a

roughening temperature larger than 0 K. For such a surface,

normally denoted as an `F face', the step free energy is positive

for all crystallographic directions coplanar with (hkl). If such a

face is growing below its roughening temperature, then it will

grow as a ¯at face with a step mechanism.

This paper will concentrate on those F faces (hkl) for which

two or more (not translation-equivalent) connected nets are

stacked upon each other within one interplanar distance dhkl .

If the nets are not roughened, interlaced step patterns may

develop on such faces.

2.2. Conditions, mechanism and shape of step interlacing

Adjacent slices dhkl, with Miller indices hkl corrected for the

systematic extinctions of non-primitive lattices, are translation

equivalent and must generate identical step patterns on an F

surface parallel to plane (hkl). In the following, these slices

will be referred to as slices with unit thickness d�hkl �u or, brie¯y,

unit slices. For example, the unit slice parallel to the (110) face

in a P lattice has thickness d110, in an F lattice d220 and in an A

lattice d220. If the thickness of the connected net is equal to

d�hkl �u , the minimum step height is also d�hkl �u and no splitting

into lower steps, i.e. no interlacing, will occur.

However, if d�hkl �u consists of a sequential stacking of two or

more connected nets then a splitting up of unit-height steps

into lower steps may take place. In this case, the different,

connected, subslices generate growth steps, each with a

different lateral anisotropy of propagation velocity. Because

of these differences in velocity, the fast substeps overtake the

slower ones and recombination to new unit-height steps

occurs, as shown in Fig. 2(a). For each direction, the bottom

subslice of the unit steps is the slowest advancing step in that

direction. If for a changing orientation of the unit step the

identity of the slowest, and thus the lowest, substep changes,

the height difference introduced must be compensated by a

splitting off and a subsequent recombination of one or more

substeps (Fig. 2b). This is the basic principle of step interla-

cing.

If one considers a series of closed-loop steps of subunit

height emitted from a central source then in each period

d�hkl �u=R (R is the growth rate of the crystal) a sequence of

substeps with total height d�hkl �u is generated. For each set

within d�hkl �u , the faster moving steps will catch up with the

slowest moving one and an equidistant step train of unit-

height steps will develop. For each direction �, the lowest

subslice of each unit step corresponds to the slowest substep in

that direction. As shown in Fig. 3, the general shape of the

closed loop of unit-height steps is identical to the inscribed

®gure of the anisotropic loop shapes of the substeps if they can
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Figure 1
An example demonstrating the principle of step interlacing, viewed in
perspective. Closed-loop steps are periodically generated at the hillock
centre O. At the corners of the growth patterns, the unit-height steps CA
and BD split into half-unit-height steps B and C.



propagate freely. The concentric patterns of `free' substeps can

be derived from the lateral anisotropy of propagation velocity

of these steps and by using the `kinetic Gibbs±Wulff'

construction (van Suchtelen, 1995, and references therein) in

two dimensions. Step splitting occurs at the points of inter-

section of the different substep patterns, that is, at sharp

corners of the inscribed ®gure. The rectilinear regions of step

splitting that radiate from the centre of the concentric step

pattern towards the sharp corners of the unit step pattern will

be denoted as `interlacing trajectories' in the following. The

details of step splitting will be elaborated in x3.

2.3. Impact of symmetry

Two cases for the occurrence of connected subnets can be

distinguished. First, the sublayers are not related to one

another by symmetry, are related by an inversion point or are

related by symmetry elements parallel to the growth surface.

For instance, as shown in Fig. 4(a), for a twofold axis parallel

to the surface, no symmetry relationship exists between the

lateral anisotropy of step velocity for the adjacent sublayers.

The interlacing evolving from these situations is not imposed

by symmetry and therefore it will be denoted as `incidental

interlacing' in the following. It is important to realize that in

this case the top surfaces of the sublayers are not symme-

trically related and thus are essentially different. This differ-

ence leads to a different surface free energy for each sublayer

and therefore to a different growth rate for each layer. It is to

be expected that in many cases the sublayer with the highest

surface free energy grows slowest in all directions and no

change in the identity of the slowest step occurs. Therefore

incidental interlacing is less common and, as far as is known to

us, has only been revealed during an in situ study of (001)

K2Cr2O7 etched in a 0.7% water±ethanol mixture (Plomp et

al., 2000).

If for an F-type surface the splitting up of d�hkl �u into

connected subnets is imposed by symmetry and the anisotropy

in step advancement velocity of these sublayers is related by

symmetry, then the resulting interlacing of steps will be indi-

cated as `symmetry-induced interlacing'. This situation results

if a translation less than d�hkl �u perpendicular to the growth

surface z(x, y) occurs in combination with a point symmetry

operation that does not change the heights z(x, y) of all

surface places. Therefore, the action of a rotation axis or a
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Figure 3
The general shape of the closed loop of unit-height steps is identical to
the inscribed ®gure of the anisotropic shapes of the subunit steps if they
can propagate freely: (a) incidental interlacing; (b) symmetry-induced
interlacing imposed by a 21 axis.

Figure 2
The basics of step interlacing. (a) Recombination of a periodic sequence
of substeps to a periodic sequence of unit-height steps d�hkl �u. Here the
faster substeps (f) catch up with the slowest propagating one (s), and for
each unit-height step the bottom slice corresponds to the slowest substep.
(b) If for a changing orientation of the unit step the identity of the
slowest, and thus the lowest, substep changes, the height difference must
be compensated by a splitting off and subsequent recombination of one
or more substeps.

Figure 4
The anisotropic propagation velocity of adjacent substeps is only related
by symmetry if a rotation axis or a mirror plane combined with a
translation of less than d�hkl �u , both perpendicular to the surface, is
present. This combination leads to symmetry-induced interlacing. (a) A
twofold axis parallel to the surface can give incidental interlacing; (b) a
glide plane perpendicular to the surface `must' give symmetry-induced
interlacing.



mirror plane perpendicular to the surface together with a

translation less than d�hkl �u , also perpendicular to the surface

(Fig. 4b), is required. In other words, symmetry-induced

interlacing is expected if screw axes and/or glide planes

perpendicular to the growth surface are present. The trans-

lation vector of the glide plane must not be parallel to the

surface. The connectedness of the subslices, which is necessary

to permit growth via steps of subslice height, follows directly

from the PBC theory, namely, the above-mentioned faces are

only F type if a connected net of growth units ®ts within each

subslice of thickness dhkl=n, with n � N=m if m � N=2, or

n � N=�N ÿm� for an Nm screw axis (n � 2 for an a-, b-, c- or

n-glide plane and n � 2 or 4 for a d-glide). Of course, dhkl=n

must be less than d�hkl �u , and the connected nets should not be

thermally or kinetically roughened.

As concluded from the above, symmetry-induced step

interlacing occurs during the growth of those F faces upon

which a perpendicular screw axis and/or a perpendicular glide

plane is present. The translation of the glide plane must have a

®nite component, less than d�hkl �u , normal to the surface. Since

such faces show systematic extinction of X-ray re¯ections, a

general rule for the occurrence of symmetry-induced interla-

cing can now be given. The rule is if a plane with Miller indices

(hkl) corrected for the systematic extinctions of non-primitive

lattices and being parallel to a connected net in the crystal

exhibits a systematic extinction of X-ray re¯ection then

symmetry-induced interlacing is to be expected on a crystal

surface parallel to this plane. As will be discussed in x4, despite

this `strict' rule, in several cases the interlacing is absent as a

consequence of pseudosymmetry.

For both incidental and symmetry-induced interlacing, the

macroscopic symmetry of the unit-height step patterns follows

Neumann's rule (e.g. Nye, 1984) and is determined by the two-

dimensional point group of the surface. For incidentally

interlaced patterns, the situation is obvious, since the

symmetry of each subslice, and thus of the whole stack d�hkl �u ,

is determined by the point-symmetry elements perpendicular

to the surface. Here the symmetry is exact. For the patterns

resulting from symmetry-induced interlacing, one has to

consider the projection of the step patterns onto the (hkl)

plane. In this case, the translations perpendicular to z(x, y)

`vanish' and the point-group symmetry resulting from all the

symmetry elements perpendicular to this surface remains. For

instance, the pattern of unit steps forced by a 21 axis, as shown

in Fig. 3(b), exhibits twofold symmetry. A unit-height pattern

generated by an Nm axis shows n-fold symmetry, whereas the

unit step pattern resulting from a glide plane exhibits mirror

symmetry. The number and the orientation of the interlacing

trajectories are also subjected to the two-dimensional point-

group symmetry of the crystal surface. For a screw axis Nm

perpendicular to the surface, the number of interlacing

trajectories must be uN [for a 21 axis 2 + 4(u ÿ 1), as will be

elaborated in x3.3], with u a positive integer. For a glide plane

perpendicular to the surface, there must be 2 + 2(u ÿ 1)

interlacing trajectories, the ®rst two being parallel to the glide

mirror plane. In x3, it will be shown that in the case of

symmetry-induced interlacing the two-dimensional point-

group symmetry of the step patterns is approximate rather

than exact.

3. Symmetry of concentric interlaced step patterns

3.1. Periodicity

Consider a point source on a crystal surface (hkl), which

emits `step sequences' periodically with frequency f = R/d�hkl �u .

A `step sequence' is here de®ned as a group of adjacent

subunit steps, the sum of the heights of which equals one unit-

slice thickness, d�hkl �u . The step velocity, vst(�), is de®ned as the

displacement velocity of the steps in the direction parallel to

the position vector r(�), which generally is not the direction

perpendicular to the step. The origin of the coordinate system

r(�) coincides with the centre that emits steps. The velocity

vst(�) is assumed to be constant in time. In the ®rst instance, we

consider the case d slice
hkl � d�hkl �u , i.e. the step height equals the

unit-slice thickness d�hkl �u. This situation is shown in Fig. 5. The

periodicity of the step pattern in space can now be expressed

as

z�r���; t� � z�r��� � ik���; t� � id�hkl �u : �1�

In this equation, z[r(�), t] is the height of the crystal surface at

position r(�) and time t, k(�) is the step spacing in direction

r(�), which equals vst���=f , and i is an integer corresponding to

the number of steps between r(�) and r(�) + ik(�). At a ®xed

position r(�), the periodicity in time is formulated as

z�r���; t� � z�r���; t � j=f � ÿ jd�hkl �u ; �2�

where j is the number of steps that passed r(�) during the time

interval j=f .

From the assumption that z[r(�), t] is a pattern of steps

generated from a central point, which advance at a constant

velocity, it follows that
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Figure 5
A concentric step pattern emitted from a central source: (a) top view; (b)
side view.



z�r���; t� � zfr��� ÿ tvst���g; �3�
with r(�) ÿ tvst(�) � 0.

Combining (1)±(3) gives the periodicity of a concentric step

pattern in space and time:

z�r���; t� � zfr��� � ik��� ÿ �t � j=f �vst���g � �iÿ j�d�hkl �u ;

�4�
or equivalently [k��� � vst���=f ]

z�r���; t� � zfr��� � �iÿ tf ÿ j�k���g � �iÿ j�d�hkl �u : �5�
In these equations, the integers i and j denote the periodicity

in space and time, respectively. For etch pits, one has to take

the slice thickness as a negative number, i.e. d�hkl �u �ÿjd�hkl �u j,
because layers are removed.

3.2. Symmetry

In observing crystal surfaces by AFM or by phase-sensitive

optical microscopy, surface features re¯ecting the macroscopic

two-dimensional point-group symmetry of the surface can be

revealed. However, since these techniques are capable of

detecting height differences down to atomic distances, trans-

lations perpendicular to the surface can also be imaged. As

discussed in x2, both are the effects from all the symmetry

elements that are perpendicular to the growth surface. These

comprise those symmetry operators O = {M, T} that ful®l

z�r���; t� � zfM�r����; tg � Td�hkl �u ; �6�
where M is the transformation matrix and T < 1 is the trans-

lation component perpendicular to the surface. In fact, the set

of (2 � 2) matrices M describes the macroscopic point-group

symmetry of the surface. Examples of O are n-fold axes and

mirror planes perpendicular to the surface O = {M, 0}. To have

some relevance for the case of symmetry-induced interlacing,

it is necessary that 0 < T < 1. This condition occurs for screw

axes and glide planes perpendicular to the surface,

O � fM;Tg � fM; 1=ng. Other symmetry operators, like

inversion (z[r(�), t] � ÿz{ÿ[r(�)], t}), that do not ful®l the

symmetry requirement (6) do not in¯uence the symmetry of

the crystal surface as seen by optical microscopy and AFM.

Application of a pure point-symmetry operator, O = {M, 0},

of the above type gives

z�r���; t� � zfM�r����; tg; �7�
which is merely Neumann's rule. For instance, crystal surfaces

with a perpendicular fourfold axis exhibit spirals, hillocks and

etch pits with fourfold symmetry. Application of a screw or

glide operation, O = {M, T}, of the above type yields in

combination with (4) essentially different results:

z�r���; t� � zfr��� � ik��� ÿ �t � j=f �vst���g � �iÿ j�d�hkl �u
� zfM�r��� � ik��� ÿ �t � j=f ÿ T=f �vst����g
� �iÿ j� T�d�hkl �u
� zfM�r����; t ÿ T=f g � Td�hkl �u : �8�

It is clear from the above equation that Neumann's rule, as

formulated in (7), is no longer valid. This outcome is explained

by the fact that the dimension viewed perpendicular to the

surface is no longer macroscopic but is observed on a mol-

ecular scale.

An important consequence of (8) is that upon applying

symmetry operator O the equivalent position of z[r(�), t] is at

M[r(�)], at Td�hkl �u higher and at a time T=f earlier. A time T=f

earlier is identical to a shift back over a distance jv�st���T=f j
along direction M[r(�)]. Of course, further symmetry-equiva-

lent positions are generated by the translation symmetry in

place and time as described by (4) and (5). This information is

also included in (8). The underlying physics is that T=f is the

time needed to generate a new sublayer at the growth centre

before this sublayer is emitted.

As an example, the use of (8) is demonstrated for a twofold

screw axis perpendicular to the surface

O � ÿ1 0

0 ÿ1

� �
; 1

2

� �
:

Equation (8) gives a step pattern that ful®ls the symmetry

relation

z�r���; t� � zfr��� � ik��� ÿ �t � j=f �vst���g � �iÿ j�d�hkl �u
� zfM�r��� � ik��� ÿ �t � j=f ÿ 1=2f �vst����g
� �iÿ j� 1=2�d�hkl �u
� zfÿr��� ÿ ik��� � �t � j=f ÿ 1=2f �vst���g
� �iÿ j� 1=2�d�hkl �u
� z�ÿr���; t ÿ 1=2f g � d�hkl �u=2: �9�

This equation implies that a symmetry-equivalent point r(�)

can be found by the successive application of (i) a twofold

rotation, (ii) an increase in height of d�hkl �u=2, or (iii) going

back in time by 1=2f, which is identical to a shift back over a

distance jvst���=2f j � jk���=2j along direction ÿr(�). The

simplest pattern and a more complex pattern of interlaced

steps that ful®l the symmetry given by (9) are shown in Fig. 6.

3.3. Implications and examples

Fig. 7 shows the patterns of symmetry-induced interlacing

for the various screw axes and glide planes that can occur

perpendicular to a growing F-type surface. Here only the

simplest cases are shown: only one single symmetry element

perpendicular to the growth surface and the lowest possible

number of interlacing trajectories. For a glide plane, the

minimum number of trajectories is two; for an Nm screw axis

the minimum is N. In deriving the patterns, (8) is used in a

fashion similar to that discussed in the previous section for the

21 axis. It can clearly be recognized that the characteristics of

the interlacing patterns and the step splitting involved are

determined by the central symmetry element. The simple

interlacing patterns of Fig. 7 are expected to be the most

common encountered in experiments.

Including more complicated patterns determined by one

single Nm screw axis or one glide plane perpendicular to the

surface, (8) can only be ful®lled if the number of trajectories

equals uN and 2 + 2(u ÿ 1), respectively, with u a positive

integer. One exception is the 21 screw axis for which the
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number of trajectories must be 2 + 4(u ÿ 1). This expression

follows from the fact that, upon application of (9) to a given

surface site, for a 21 axis the equivalent point is 1=2 times (plus

an integer value, which will not be considered here) higher or

lower. Since each trajectory corresponds to a height jump of

�1=2 orÿ1=2, to reach this position along a given step (route I

in Fig. 6b) one must pass an odd number of interlacing

trajectories. The same holds for the symmetrically equivalent

route II back to the original position. Therefore, the total

number of interlacing trajectories is twice an odd number, or

2 + 4(u ÿ 1). An alternative approach to deducing the number

of interlacing trajectories for a 21 axis is by considering the

number of intersection points of two equivalent step patterns

that are rotated 180� with respect to one another. This value

also amounts to 2 + 4(u ÿ 1) and is, as elaborated in x2.2,

identical to the number of interlacing trajectories.

In many cases, a cooperation of different screw axes, glide

planes and other symmetry elements perpendicular to the

growth face exists, which leads to more or less complex

interlacing patterns. For all these symmetry elements the step

pattern must obey (7) and (8). An example is given in Fig. 8,

which shows a possible interlacing pattern on the (0001)

surface of a crystal with space group P63mc. The interlacing

pattern ful®ls the symmetry requirements imposed by the 63

axis and the three c-glide planes according to (8), as well as

those imposed by the three mirror planes according to

Neumann's rule given by (7).

The presence of a screw axis or glide plane perpendicular to

a growth face does not necessarily lead to symmetry-induced

interlacing. For several orientations in non-primitive space

groups, the subslices that result from the occurrence of screw

axes and glide planes are identical to unit slices in these non-

primitive lattices. Often in such groups the Nm screw axes are

parallel to n-fold axes or the glide planes are parallel to mirror

planes. Examples of both situations are the (020) slices

perpendicular to the 21 axes and the (200) slices perpendicular

to the a-glides in space groups C2 and Cm, respectively. In

these cases, no symmetry-induced interlacing will occur for the
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Figure 6
The simplest (a) and a more complex (b) pattern of symmetry-induced
interlacing, which is imposed by a twofold screw axis perpendicular to the
growth surface.

Figure 7
The simplest possible patterns of symmetry-induced interlacing that are
imposed by one single screw axis or one glide plane perpendicular to the
growing crystal surface. The 64 and 65 patterns are mirror images of 62 and
61, respectively.

Figure 8
A symmetry-induced interlacing pattern on the (0001) surface of a crystal
with space group P63mc. The symmetry elements perpendicular to the
surface are also given.



respective (010) and (100) faces, since the adjacent slices are

translation equivalent. Furthermore, in a number of primitive

space groups, screw axes and glide planes exist that span two

unit slices, d�hkl �u . Again, the slices are translation equivalent

and the corresponding surfaces will not show symmetry-

induced interlacing. An example is the (110) face of tetragonal

lysozyme, which does not reveal interlacing despite the

presence of a perpendicular 21 axis (Plomp et al., 2002). This

circumstance is explained by the fact that in space group

P43212, in which this protein crystallizes, the 21 axis perpen-

dicular to (110) spans two unit slices d110. The above implies

that, in considering the relevance of screw axes and glide

planes for the occurrence of symmetry-induced interlacing,

one has to consider strictly the systematic extinction criterion

as formulated in x2.2.

4. Confrontation with some experiments

4.1. Regular patterns

The ®rst case of step interlacing reported in the literature

was the hexagonal cross-laced spiral pattern on (0001) SiC-6H,

as observed by Verma (1951) and interpreted by Frank (1951).

The pattern they observed was identical to that drawn in Fig. 8.

As discussed in x3.3, this pattern is in accordance with the

various symmetry elements perpendicular to the (0001)

surface of a crystal structure with space group P63mc. The

same interlacing pattern was also encountered for the (0001)

surfaces of other compounds crystallizing in space group

P63mc, such as SiC-4H (Sunagawa & Bennema, 1979; van der

Hoek et al., 1982) and GaN (Nowak et al., 1999; Zauner et al.,

2002).

Interlacing patterns introduced by a single 21 axis, in the

absence of other symmetry elements perpendicular to the

surface, were found on the (010) face of the steroid 7�MNa

(space group P21) for growth (Stoica et al., 2004) and on the

(010) face of acetaminophen (space group P21=n) for etching

(Li et al., 2000).

In 1981, the interlacing pattern in Fig. 9 was observed on the

(001) surfaces of potash alum [KAl(SO4)2 �12H2O] crystals by

using optical phase contrast microscopy (van Enckevort et al.,

1981). Potash alum crystallizes in space group P21=a�3. As

follows from a PBC analysis (Hartman, 1969) and from surface

topography (van Enckevort et al., 1981), the (001) form grows

as an F face with slice thickness d200. In superposition on the

step pattern, Fig. 9 also gives all the symmetry elements that

are perpendicular to the (001) surface. Using (8), it can be

shown that the step pattern is identical to the simplest possible

interlacing ®gure that can be obtained by the combined action

of the three perpendicular symmetry elements. Here the

c-glide and the 21 axis generate the interlacing pattern. The

b-glide plane, which has no translation component perpendi-

cular to the (001) surface, induces no interlacing but makes the

step pattern mirror symmetric along [010]. On the octahedral

surfaces of the potash alum crystals, no interlacing was

observed. This result agrees with the fact that in P21=a�3 the

(hhh) planes do not exhibit systematic extinction of X-ray

re¯ections.

Another example of step interlacing that is introduced by a

combination of symmetry elements was observed for growth

spirals on the (110) surfaces of ¯ux-grown garnet crystals.

These interlacing patterns, which were observed with the help

of optical phase contrast microscopy by Cherepanova et al.

(1989), are described in detail by Bennema et al. (1983). The

patterns are characterized by four perpendicular interlacing

trajectories at which unit steps with height d110 split into two
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Figure 9
A symmetry-induced interlacing pattern on the (001) surface of a crystal,
such as potash alum, that crystallizes in space group P21=a�3. The
symmetry elements perpendicular to the surface are also given.

Figure 10
A symmetry-induced interlacing pattern on the (110) surface of a crystal,
such as garnet, that crystallizes in space group Ia�3d. (a) Symmetry
elements perpendicular to the growth surface plus inversion points; (b)
the pattern of interlaced steps.



lower steps, d220. The (110) planes are `forbidden' according to

the selection rules of the space group Ia�3d of garnet but are

`allowed' by its I operator. Therefore, on the (110) surfaces,

symmetry-induced interlacing is expected to occur. Following

the selection rules of the space group, the thickness of the

subslices is d220. Fig. 10(a) shows the symmetry elements

perpendicular to the ��110� plane in space group Ia�3d. The

relevant symmetry elements are the a-glides and the d-glides,

both with a translation component d220 perpendicular to the

surface, and the twofold axes. The 21 screw axes involve a

translation equal to d110, which is identical to the unit-slice

thickness. Therefore, these symmetry elements do not affect

the interlacing pattern. With the help of (7) and (8), it can be

deduced that the simplest interlacing pattern, which is

consistent with the combined action of the three relevant

symmetry operators, is that shown in Fig. 10(b). Here the

a- and d-glide planes generate the four perpendicular inter-

lacing trajectories and the 2 axis makes the complete ®gure

twofold symmetric. The step pattern of Fig. 10(b) is identical

to that observed by optical microscopy. The spirals on the

(112) faces of the ¯ux-grown garnet crystals did not reveal

interlacing of steps. This observation agrees with the fact that,

according to the selection rules of space group Ia�3d, the

(hh2h) planes are not forbidden.

A ®nal example of growth spirals exhibiting step interlacing

was observed on the (001) surfaces of NiSO4�6H2O crystals,

which were grown from an aqueous solution (van Enckevort

& Klapper, 1987). The step pattern as observed by optical

phase contrast microscopy is schematized in Fig. 11. In this

®gure, two very broad interlacing trajectories can be recog-

nized, at which the unit-height steps, d001, split into two half-

unit-height steps, d002. The space group of NiSO4 �6H2O is

P41212 (O'Connor & Dale, 1966). In this space group, the

symmetry elements perpendicular to the (001) growth surface

are the 41 and 21 axes. The simplest possible interlacing pattern

on such a surface is identical to that drawn in Fig. 7 for the case

of a single 41 axis perpendicular to the growth surface. This

pattern is essentially different from the observed features as

presented in Fig. 11. The observed interlacing, however, is

consistent with the occurrence of only a twofold screw axis

perpendicular to the growth surface. This indicates a

symmetry lowering from P41212 to P21212. In other words,

judging from the interlaced surface patterns as revealed by

optical microscopy, the symmetry of the NiSO4�6H2O crystals

investigated by van Enckevort & Klapper (1987) appears to be

orthorhombic rather than tetragonal. A difference in crystal-

lographic symmetry as determined by X-ray diffraction and as

deduced from crystal growth properties (hypomorphism) is

not uncommon; such a discrepancy has also been encountered

for NH4H2PO4 (Bennema, 1965; Verheijen et al., 1996),

K2Cr2O7 (Derksen et al., 1994, and references therein; Heide

& Follner, 1996; Heide et al., 1996; Plomp et al., 2000) and

Ba(NO3)2 (Maiwa et al., 1998).

4.2. Spiral and two-dimensional nucleation growth

At low and intermediate supersaturations, most crystals

grow via a spiral growth mechanism, which is induced by

outcropping dislocations with a Burgers vector component

perpendicular to the growth surface. The Burgers vector, b, of

a perfect dislocation is equal to one or the sum of two or more

unit translations in the crystal (Hull & Bacon, 1965). For

example, in an I cell, these unit translations are [ 1
2,

1
2,

1
2 ], [100],

[010] and [001]. It can be shown that the component of

b � �u; v;w� perpendicular to a face (hkl) has a length of

jhu� kv� lwjdhkl. This is the total step height emitted from a

spiral dislocation. For a perfect dislocation ending on a face

parallel to a plane (hkl)u, b? � jhu� kv� lwjd�hkl �u , with

jhu� kv� lwj equal to zero or a positive integer, m. In this

case, the total step height generated is md�hkl �u for each turn of

the spiral. If m � 0, no spiral growth occurs. In the nomen-

clature proposed by Frank (1981), a dislocation is described as

`rampant' if m > 0 and `couchant' if m = 0. For low-index faces

and unit-length Burgers vectors, m often equals one and the

situation is as described in the previous sections. For larger m,

the multiple spiral step generally splits into unit-height steps

as a consequence of entropy repulsion at the dislocation

outcrop, where the step spacing is extremely small (Maiwa et

al., 1998; DeYoreo et al., 1994; Wang et al., 1990; Cuppen et al.,

2000). In these cases, an m-fold spiral develops and (8) can

again be used. The same pattern is obtained, except that the

emission frequency, f, is about m times higher than for a single

spiral.

For partial dislocations, jhu� kv� lwj is generally not an

integer, and in these cases the height of the spiral steps is not

an integer times d�hkl �u. If a pair of partials, connected by a

stacking fault, is suf®ciently separated then isolated spirals

develop, which do not generate the complete set of sublayers

within d�hkl �u . This process leads to a lowering of symmetry. For

instance, Aquilano et al. (2003) found that for partial dislo-

cations with b � �001�=2 ending on the (001) surface of

�-amylase crystals, spiral growth resulted in a new polytype,

the symmetry of which was lowered from P212121 to P21. The

`partial' spiral did not generate the sequences of AB layers
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Figure 11
A symmetry-induced interlacing pattern made up of d001 and d002 steps, as
observed on the (001) surfaces of NiSO4 �6H2O crystals grown from an
aqueous solution.



that would be expected for a 21 axis perpendicular to the

surface; only a stacking of A layers was formed.

If the new layers are formed by random two-dimensional

nucleation growth, no concentric step patterns develop and

the models developed in this paper cannot be applied. On the

other hand, the criterion based on the systematic extinction of

X-ray re¯ection can still be used to predict the symmetry-

induced periodic change of two-dimensional nucleus orienta-

tion in successive growth layers, as was found for different

proteins by Plomp et al. (2002).

4.3. Pseudosymmetry and pseudointerlacing

AFM topography of growth spirals on the (001) surfaces of

Ba(NO3)2 crystals grown in an aqueous solution, which crys-

tallize in space group P213, does not reveal step interlacing,

despite the presence of a 21 axis perpendicular to the growth

face (Maiwa et al., 1998). However, in this case, the concentric

step patterns, made up of half-unit-height steps, d200, exhibit a

twofold pseudosymmetry. With regard to the anisotropy in

step velocity, this makes the adjacent growth slices (pseudo)-

translation equivalent and no interlacing will occur. Another

case of the absence of interlacing due to pseudosymmetry was

observed and calculated for the growth of (0001) SiC-6H at

higher temperatures (van der Hoek et al., 1982). In this case,

probably as a result of surface diffusion limited growth, the

step velocity is isotropic and the step patterns emitted from

the spiral centre become circular. This highest possible

symmetry in step velocity makes the adjacent d002 slices

(pseudo)translation equivalent and interlacing no longer

occurs. From crystal growth theory, it is well known that

smaller kink energies, higher temperatures and super-

saturations or surface diffusion limited growth on a crystal

surface with three-, four- or sixfold symmetry reduces the

anisotropy of step velocity (Burton et al., 1951; Sunagawa &

Bennema, 1982; Swendsen et al., 1976; van Enckevort, 1997). If

in such cases the step velocity becomes more or less inde-

pendent of step orientation then adjacent steps will not

intersect and interlacing will be absent. Here growth proceeds

by circular steps of subslice height.

Step interlacing has also been encountered in the region

where two arrays of differently oriented macrosteps contact

one another. Since here the splitting off and subsequent

recombination of unit-height or multiple steps from the

macrosteps is related neither to symmetry nor to the occur-

rence of subslices, this phenomenon will be denoted as

pseudointerlacing. Pseudointerlacing, the principle of which is

shown in Fig. 12, has for instance been observed for macro-

steps on the (010) surface of KH-phthalate crystals (Fig. 8 of

van Enckevort & Jetten, 1982) as well as on the (110) surfaces

of garnet crystals by Zamozkij & Klevsov (1965). Macrosteps

on a crystal surface develop if a perturbation in an equidistant

step train emitted from a growth centre leads to an accumu-

lation of steps. This situation occurs if, for two adjacent steps

with reduced separation, the step behind moves faster and

overtakes the one in front. Such an outcome is possible in

those cases of surface diffusion limited growth, where the

adsorbed growth units enter a step more easily from its rear

side than from its front (Schwoebel, 1969). A similar instability

of a step train also occurs if steps are retarded by time-

dependent impurity adsorption on the crystal surface (van der

Eerden & Muller-Krumbhaar, 1986; Kandel & Weeks, 1994,

1995; de Theije et al., 2000). In both situations, the formation

of macrosteps is a statistical process, which differs for adjacent

arrays of differently oriented steps. Therefore, the terraces

that belong to neighbouring macrostep arrays of different

orientation have a different height. These height differences

are compensated by a zigzag splitting off of lower steps from

the macrosteps, as shown in Fig. 12. It is clear that this

phenomenon of pseudointerlacing is related neither to

symmetry nor to the occurrence of subslices with thickness less

than d�hkl �u .

5. Conclusions

Observation of growth spirals and other concentric step

patterns on F-type crystal surfaces with the help of optical

microscopy and AFM often reveals a periodic splitting and

recombination of unit-height steps into lower steps. Such

interlacing of steps may occur if one unit slice, d�hkl �u (the

Miller indices hkl being corrected for the systematic extinc-

tions of non-primitive lattices), consists of a sequential

stacking of two or more connected subnets. Then a splitting of

unit-height steps into substeps occurs if the identity of the

slowest advancing substep changes with step orientation. If the

adjacent subslices are not related by a translation combined

with the action of a point-symmetry element perpendicular to

the surface then the occurrence and the characteristics of this

so-called incidental interlacing are not imposed by symmetry.

Symmetry-induced interlacing occurs if, because of the

presence of screw axes or glide planes perpendicular to the

surface, the anisotropy of step propagation of the adjacent

sublayers is related by symmetry, or alternatively if a plane

(hkl) parallel to the F face exhibits a systematic extinction of

X-ray re¯ection, which is not due to a non-primitive lattice. In

these cases, apart from pseudo-symmetry, interlacing must

occur. The precise details of the step interlacing and the
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Figure 12
Pseudointerlacing; the height differences of the corresponding terraces in
adjacent arrays of differently oriented macrosteps are compensated by a
splitting off of lower steps from the macrosteps. Large numbers: terrace
heights; numbers preceded by S: step heights.



trajectories of the split steps follow from a mathematical

description of the step patterns as functions of space, time and

symmetry. On some crystal surfaces, cross-laced macrosteps

were reported; this phenomenon is described as pseudo-

interlacing. It is not imposed by symmetry or by the presence

of substeps but results from a compensation of the height

difference of adjacent, differently oriented, macrosteps.
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